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Electricity and magnetism – From Gauss‘s law to 
the Maxwell-Equations

Dipl. Phys. Dr. Bernd Müller-Bierl

Electric field, magnetic field, dielectric displacement, magnetic flux, Coulomb-force, principle of super-
position, Biot and Savart‘s law, Ampères circuital law, current conservation (continuity equation), magnetic 
monopoles do not exist, Faraday‘s law of induction, Maxwell‘sdisplcaement current and Maxwell‘s 
Equations, potentials, Lorentz force, boundary conditions of the electric displacement, electric field, 
magnetic induction and magnetic field, field of a dipole, force and torque on a dipole in a background field.
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Historical evolution

Compass presumably China 2500 B.C.

Loadstone attracts iron 600 B.C. 

Magnetite can magnetize iron Ancient Greece

Earth possesses a magnetic field Gilbert (1540-1603)

Discovery of magnetic poles Peregrines (1269)

Forces which act on poles Coulomb (1736-1806)

Magnetism as moving electricity Ampère (1822)

Field equations Maxwell (1862)

Modern formulation of the field equations Hertz (1890)

Special theory of relativity Einstein (1905)
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Coulomb‘s law and the electric field E

Law describing the forces between two electric charges (poles)
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Gauss‘s law

The total charge in a volume is found by integration

∫∫ ==
VV

dvdQQ  ρ

To an electric charge an electric flux of an absolute value of 1 C is dedicated:

( )CQ=Ψ

The electric displacement density is then given by:

SdDd
rr

 =Ψ

Gauss‘s law states, that:
QSdD

V

=∫
∂

rr
 

Integrating Coulomb‘s law, we find that:
ED
rr

0ε=
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To find Gauss‘s law in ist differential form, we use the divergence theorem:

Accordingly to Gauss‘s law, it holds that

vv
enclosed

Δ
=

Δ

⋅∫ QSdD
rr

with Lim                the left side of the equation converges to div D, whereas the right 
side converges to     .

0v →Δ
ρ

We therefore get one of the Maxwell equations for stationary electric fields, namely

From Gauss‘s law, it follows the divergence theorem, namely

ρ=D
r

div or ερ=E
r

div

dVDSdD  div
rrr

∫∫ =⋅
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On the other hand, starting from the Maxwell equation                 and using the 
divergence theorem, one obtains Gauss‘s law                        .

ρ=D
r

div

∫∫ =
∂

dVSdD
V

  ρ
rr

We compute the divergence in Cartesian coordinates. Let A be a vectorfield:

zzyyxx aAaAaAA ˆˆˆ ++=
r

We compute the surface Integral                 by summing up over a cube 
where at the left side we have

∫ ⋅ SdA
rr

( ) zyxASdA x ΔΔ−≈⋅∫
sideleft 

rr

And on the right side, we have

( )

zyx
x
AxA

zyxxASdA

x

x

ΔΔ⎥⎦
⎤
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⎡ Δ

∂
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+≈

ΔΔΔ+≈⋅∫
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So that from these two sides we have
zyx

x
Ax ΔΔΔ
∂
∂
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Adding up the contributions from all sides, we obtain
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so that by the definition of the divergence 
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Magnetic monopoles do not exist

Isolated magnetic monopoles never have been observed in nature. Magnetic poles 
always appear as pairs. A pair of poles forms a dipole. The magnetic moment of the 
dipole is given by

dm
rr

 =μ

d shows from the negative to the positive pole.

Stated mathematically: The magnetic field has no sources. This is also expressed 
by the fact, that the magnetic field lines are always closed loops. Therefore, there‘s 
no Gauss law for the magnetic induction. Instead it holds that:

0 =∫
∂V

SdB
rr
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Or, otherwise stated while applying the divergence theorem for arbitrary volumes:

0 div =B
r

that means that for infinitesimal volumes there is no net flux coming out of such a 
volume, i.e. there are no magnetic charges.
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Ampère‘s law and Biot and Savart‘s law

From Ampère‘s law and the absence of sources of the magnetic field it follows (e.g. 
using potential theory) the Biot and Savart‘s law:

In case of time-independent (stationary) currents, Ampère‘s law holds

i.e. we assign to a stationnary current density J – analogous to Gauss‘s law – a 
magnetic flux B.

∫∫ ⋅=⋅ AdJsdB
C

rrrr
  0μ

It follows – analogous to Ampère‘s law – from the observation of forces, which act 
on currents.
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The limit of the relationship of circulation to loop area can be written for loops being 
orentated according to the right hand rule as

i

C

A A

SdF
i

i

∫ ⋅

→

rr

0
lim

which gives a scalar for each direction x, y, z, which are components of a vector 
called curl

i

C

A A
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0
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We return to the original loop C, where we get the circulation
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This is the theorem of Stokes

AdFSdF
AC

rrrr
⋅=⋅ ∫∫  curl

From which we get the Ampere‘s law in ist differential form

JB
rr

0 curl μ=
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We now compute the curl of F in Cartesian coordinates
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We consider an infinitesimal area oriented in direction ax
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The y and z components are computed correspondingly. Together we obtain
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Electromagnetic potentials

The electric field in the absence of charges is conservative, so that E can be 
derived from a scalar potential

Φ−=  gradE
r

For a single charge it holds that

r
q

04

1

πε
=Φ

This is a solution of the Poisson equation 

ερ−=Φ∇⋅∇

A general solution would be

( ) ( )
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The divergence of the magnetic field vanishes, so that B can be written as curl of a 
voctor potential

AB
rr

 curl=

Ampère‘s law
JA
rr

0) curl curl( μ=

Can be rewritten as 
JAA
rrr

0) grad(div) div grad( μ=−

Using the Coulomb gauge 
0 div =A

r

this results in the Poisson equation for A

JA
rr

0μ−=∇⋅∇

Ψ∇+→ AA
rr
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( ) ( )
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The solution we do already know from the electric case

with                         we obtain ABd
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this is Biot and Savart‘s law.
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Faraday‘s law of induction

We have seen: Flowing electricity causes a magnetic field. On the other hand do 
time-dependent magnetic fields (a change in the magnetic flux through a 
conducting loop) lead to an induced Voltage and thereby cause an electric field. 
The penomenon of induction observed by Faraday can be stated as follows:

Ad
dt
Bd

dt
dsdE

C

r
r

rr

∫∫ −=
Φ

−= 

t
BE
∂
∂

−=
r

r
 curl

Or, using the theorem of Stokes, 
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Magnetic fields in matter: Magnetisation M und polarisation P

A material in a magnetic fieldexperiences a magnetisation M, defined as Dipole 
moment per unit volume.

It holds Ampère‘s law (differential form)

jB
rr

0 curl μ=

where j is a surface current density. The magnetisation M thus possesses an 
equivalent current density MjM

rr
 curl=

To fix B we must evaluate this equivalent current density

( ) ( ) jMBjjB M 000  curlor   curl μμμ =−+=
rr

Thus write MBH
rrr

00 μμ −=

and it follows ( )MHB
rrr

+= 0μ

In the same way a material in an electric field experiences a polarisation P:
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ρ=D
r

 div

A material in an electric fieldexperiences a polarisation P, defined as Dipole 
moment per unit volume.

It holds Gauss‘s law (differential form)

where ρ is a volume charge density. The polarisation P thus possesses an 
equivalent charge density

Pp
r

 div -=ρ
To fix E we must evaluate this equivalent charge density

( ) ρρρ =++= PEE p
rrr

 divor         div
Thus write 

and it follows

PDE
rrr

−=0ε

PED
rrr

+= 0ε
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Boundary conditions

The boundary conditions for the surface between two dielectrica say that

- the tangential component of E is continuous across the boundary

- the normal component of D makes a step of the amount of the absolute 
value of the surface current density

0
21
=− tt EE

( ) ρ=⋅− nDD ˆ12

rr
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Boundary conditions

the electric field is conservative

0 
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Boundary conditions

Starting from Gauss‘s law

∫∫∫∫∫∫ =++=
A

S
area lateralarea bottomarea top

     SdSdDSdDSdDSdD
rrrrrrrrr

ρ

The second integral disppears because of being inside the guide. The third integral 

disappears because of Dt = 0

∫ ∫∫ ==
areaupper 

Sn
areaupper 

   dSdSDSdD ρ
rr

It follows

material dielectric afor   

conductor; afor             

21 Snn
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DD
D

ρ
ρ
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=
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Boundary conditions

The boundary conditions for the magnetic fields at a boundary say that

- the tangential component of H makes a step at the boundary
of the amount of the current density

- the normal component of B is continuous across the boundary

( ) 0ˆ12 =⋅− nBB
rr

( ) KnHH
rrr

=×− ˆ21
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Boundary conditions

Starting from the non-existence of magnetic monopoles

0    
area lateralarea bottom

22
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rrrrrrrr

Letting the high of the cylinder approaching zero we get
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Boundary conditions

From Ampère‘s law we get (left for an exercise)
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Field of a dipole

The potential of a charge distribution   
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The potential in A is then given by
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Or, generally with                        and with dipole moment defined as  rrr r′=′  ̂cosθ ∫ ′′= Vdrp  ρrr

22

 ˆ
  ˆ

r
prkVdrr

r
kU A

r
r =′′= ∫ ρ

e.g. for a dipole in the origin, oriented in z-direction, we have a potential of  
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so that the components of the elecric field are given by  
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Force and torque on a dipole

The torque of an electric dipole in an electric field is given by  

EpT
rrr

×=

The force on an electric dipole in an inhomogeneous field is given by  

( ) EpF
rrr

  ∇⋅=

The far-fields of electric and magnetic dipoles are identical.  
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Lorentz force an a moving charge

The relation between fields, electric charges and currents in the general case (time-
dependent case) is described by the general expression for the Lorentz force  

( )BvEqF
rrrr

×+=

There it appears the electric field E, as well as the magnetic flux B.
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Conservation of charge

We design by j the current density of the moving charge distribution

vj rr
 ρ=

For reasons of conservation of charge and from the Gauss law applied on a 
infinitesimal volume it follows the continuity equation

0 div =+
∂
∂ j

t
rρ
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Since charges can be neither created nor annihilated, the continuity equation for 
charge density ρ and current density j holds:

t
j

∂
∂

−=
ρr

 div

For a stationary current density j the magnetic field obeys Ampère‘s law: jB
rr

  curl 0μ=

Looking at time-dependent charge densities and fields ( ) 0t   with   , ≠∂∂ρρ txr

e.g. a condensator decharging via a resistor, the continuity equation tells us that 

0 div ≠j
r

From Ampère‘s law, however, it always is true that  

( ) 0 curl div
1

 div
0

== Bj
rr

μ
Ampère‘s law thus is not true for the case of a time-varying charge density.

In the general case of time-varying charge densites we write

(?)  curl 0 += jB
rr

μ
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We recall the differential formulation of Faraday‘s induction law

t
Bc

c
E

∂
∂

−=
r

r 1
 curl

This is a local relation between the electric and the magnetic field if free-space 
charges are not concerned. 

For symmetry reasons between E and cB, we use a kind of induction phenomenon

t
E

c
B

t
E

c
B

∂
∂

=⇔
∂
∂

=
r

r
r

r
2

1
 curl    

1
c curl

We write

t
E

c
jB

∂
∂

+=
r

rr
20

1
 curl μ

Which is another Maxwell Equation.

Taking the divergence on both sides leads to 

( ) ( ) E
tc

jB
rrr

 div
1

div curl div 
20 ∂
∂

+= μ
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And, because                    ,   0curldiv =

( )
t

E
tc

j
∂
∂

=
∂
∂

=−
ρμμ 020  div

1
div

rr

or

( ) 0div =
∂
∂

+
t

j ρr

which again is the continuity equation. 

The term

t
E

c ∂
∂
r

2

1

Is called displacement current and is needed for the continuity equation to be 
fulfilled. 
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The Maxwell equations

From the gauss law, the absence of magnetic monopoles, Faraday‘s law of indu-
ction and Ampère‘s law follows by taking into account the continuity equation the 
Maxwell-equations (in its differential form)

Maxwell introduced the displacement current (dielektric displacement), to obtain 
consistency. 

From the Maxwell-equations (ME) it follows the existence of electromagnetic waves  
as well as the special theory of relativity (STR).

0 div ερ=E

0 div =B

dtBdE
rr

−= curl

( )dtEdjB
rrr

00 curl εμ +=
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Recommended reading:

E.M. Purcell Electricity and Magnetism: Berkeley Physics Course, Vol. 2

J.D. Jackson Classical Electrodynamics 2nd. Ed.

6/16

[  332  ]

09/22/2017




