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Electricity and magnetism — From Gauss's law to
the Maxwell-Equations

Dipl. Phys. Dr. Bernd Miiller-Bierl

Electric field, magnetic field, dielectric magnetic flux, Coulomb-force, principle of super-
position, Biot and Savart's law, Ampéres circuital law, current conservation (continuity equation), magnetic
monopoles do not exist, Faraday's law of induction, Maxwell'sdisplcaement current and Maxwell's
Equations, potentials, Lorentz force, boundary conditions of the electric displacement, electric field,
magnetic induction and magnetic field, field of a dipole, force and torque on a dipole in a background field.
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Historical evolution

Compass presumably China 2500 B.C.
Loadstone attracts iron 600 B.C.

Magnetite can magnetize iron Ancient Greece
Gilbert (1540-1603)
Peregrines (1269)

Coulomb (1736-1806)

Earth possesses a magnetic field
Discovery of magnetic poles
Forces which act on poles

Magnetism as moving electricity Ampere (1822)
Field equations Maxwell (1862)
Modern formulation of the field equations Hertz (1890)
Special theory of relativity Einstein (1905)
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Coulomb's law and the electric field E

Law describing the forces between two electric charges (poles)

4rey

F can be seperated into a testing pole q, and a field, which causes the force acting
on the testing pole

E--L %y

4zey 1

[E]=1vim
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Gauss's law
The total charge in a volume is found by integration

:IdQ:dev
\% v

To an electric charge an electric flux of an absolute value of 1 C is dedicated:
¥=Q(C)
The electric displacement density is then given by:

d¥=DdS
Gauss's law states, that: o
§D d5=0Q
kY%
Integrating Coulomb's law, we find that: .. e
0
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To find Gauss's law in ist differential form, we use the divergence theorem:

Accordingly to Gauss's law, it holds that

§5-95 _ Queiges
Av Av

with Lim Av—0 the left side of the equation converges to div D, whereas the right
side converges to A .

We therefore get one of the Maxwell equations for stationary electric fields, namely
divD=p or divE = p/e
From Gauss's law, it follows the divergence theorem, namely

§$D-dS = fdivD dv
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On the other hand, starting from the Maxwell equation divD = p and using the
divergence theorem, one obtains Gauss's law $D dS = [ pdV
v

We compute the divergence in Cartesian coordinates. Let A be a vectorfield:
A=Ad,+AA, +AdS,
We compute the surface Integral $A-dS by summing up over a cube
where at the left side we have
JA-dS ~-A(x)AyAz

) : leftside
And on the right side, we have

JA-dS = A (x+Ax)AyAz
rightside

[Ax (x)+—= Ax Ax}AyAz

So that from these two sides we have

%y AxAyAz
x

Bernd Miller-Bier| - Electricity and Magnetism page 6 of 36

09/22/2017 116

1



[ 328 ]

}Max Planck Institute for Biological Cybernetics

}Max Planck Institute for Biological Cybernetics

Adding up the contributions from all sides, we obtain

Magnetic monopoles do not exist

§Au§z[§i+47
X

Isolated magnetic monopoles never have been observed in nature. Magnetic poles

always appear as pairs. A pair of poles forms a dipole. The magnetic moment of the
dipole is given by

so that by the definition of the divergence

div A=limy, o

Aa=md
AV

d shows from the negative to the positive pole.
we get

Stated mathematically: The magnetic field has no sources. This is also expressed
by the fact, that the magnetic field lines are always closed loops. Therefore, there's
no Gauss law for the magnetic induction. Instead it holds that:

§sd§=o
v
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Or, otherwise stated while applying the divergence theorem for arbitrary volumes: Ampére's law and Biot and Savart's law
divB=0
that means that for infinitesimal volumes there is no net flux coming out of such a In case of time-independent (stationary) currents, Ampére’s law holds
volume, i.e. there are no magnetic charges. §E s = J.j A
s = T -
c

i.e. we assign to a stationnary current density J — analogous to Gauss's law — a
magnetic flux B.

From Ampére's law and the absence of sources of the magnetic field it follows (e.g.
using potential theory) the Biot and Savart's law:

dB(r) = Hol dix P

4z 2

It follows — analogous to Ampére's law — from the observation of forces, which act
on currents.
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The limit of the relationship of circulation to loop area can be written for loops being
orentated according to the right hand rule as

This is the theorem of Stokes

§F-dS jﬁ-dS‘zJ‘curlﬁdA
im & c A
A0 A
which gives a scalar for each direction x, y, z, which are components of a vector
called curl From which we get the Ampere's law in ist differential form
§lf -dS
. = -
(curIF)-n—Kllﬁry curl B = zpJ
We return to the original loop C, where we get the circulation

-
1
0
T
a

. S':il", fzn:A[%}Zn;A,(curl F)-fi; - [dA-curl F
i=] A
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We now compute the curl of F in Cartesian coordinates

(curl F)-a, = lim =———
Ayaz—0 AYA;

We consider an infinitesimal area oriented in direction a,
2 3 4 1

el ]

1 2 3 4

9,

oF,
z Ay]Az +(Fy +TYAZ)(_ Ay)+F,(-Az)
E

=FyAy+[Fl+ o

[ F
y a
The y and z components are computed correspondingly. Together we obtain

curl £ = 2 il a +[OF*—£)Q + o
oy a ) e ox)¥ oax o
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Electromagnetic potentials

The electric field in the absence of charges is conservative, so that E can be
derived from a scalar potential

E=-grad ®
For a single charge it holds that ® 1 g
Amey T
This is a solution of the Poisson equation
V-V =-pfe

A general solution would be

o) =72,
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The divergence of the magnetic field vanishes, so that B can be written as curl of a
voctor potential

B=curl A
Ampére's law B .
curl(curl A) = zJ

Can be rewritten as - . _ .
grad(div A) —div(grad A) = 1oJ

Using the Coulomb gauge B o
divA=0 A—> A+VY
this results in the Poisson equation for A
V-VA=—u,J
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The solution we do already know from the electric case
Y o 1 3(1r)
Alr)= dv,
(1) 4/['[ r, 2

with dB=curl dA we obtain

oy tal O gl 1

T T 4 r
woldl P poldl xF
B iy P Eall
4z r? azr?

this is Biot and Savart's law.
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Faraday's law of induction

We have seen: Flowing electricity causes a magnetic field. On the other hand do
time-dependent magnetic fields (a change in the magnetic flux through a
conducting loop) lead to an induced Voltage and thereby cause an electric field.
The penomenon of induction observed by Faraday can be stated as follows:

§Ed§:—d—(p:— Bz
< dt dt

Or, using the theorem of Stokes,

arE=-%
ot
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Magnetic fields in matter: Magnetisation M und polarisation P

A material in a magnetic fieldexperiences a magnetisation M, defined as Dipole
moment per unit volume.

It holds Ampére's law (differential form)

curl B= o]
where j is a surface current density. The magnetisation M thus possesses an
equivalent current density - o

jm =curlM
To fix B we must evaluate this equivalent current density

curl B = o+ iy Jor curl (B 1M )= 10§

Thus write  #oH =B — oM
and it follows B= #o(H +M )

In the same way a material in an electric field experiences a polarisation P:
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A material in an electric fieldexperiences a polarisation P, defined as Dipole
moment per unit volume.

It holds Gauss's law (differential form)
divD=p
where p is a volume charge density. The polarisation P thus possesses an
equivalent charge density -
pp=-divP

To fix E we must evaluate this equivalent charge density

__divE=p+p, or div(E+P)=p
Thus write gE=D-P

and it follows D=gE+P

Bernd Miller-Bierl
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Boundary conditions

The boundary conditions for the surface between two dielectrica say that
- the tangential component of E is continuous across the boundary
E‘1 - E‘2 =0

- the normal component of D makes a step of the amount of the absolute
value of the surface current density

(Dz *'51)"1 =P
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Boundary conditions

the electric field is conservative

3—4 inside the conductor — 0
22

JE = [Edl =

1 1

It follows

E, = D, =0 for a conductor;
E, =E, foradielectric material

Bernd Miller-Bierl - Electricity and Magnetism
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Boundary conditions
Starting from Gauss's law
f{DdS= [DdS+ [DdS+ [DdS= jdeS
top area bottom area lateral area

The second integral disppears because of being inside the guide. The third integral
disappears because of D, =

[DdS= [ D,ds=[psds

rJ.

upperarea  upperarea —_\

It follows /}
D, = ps for a conductor; W 1

- Dy, = ps foradielectric material el
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Boundary conditions Boundary conditions
Starting from the non-existence of magnetic monopoles
The boundary conditions for the magnetic fields at a boundary say that ﬁﬁ a5 = IEI d§, N IEZ d§2 N J-E -0
N b I 1l
- the tangential component of H makes a step at the boundary foparea cromarea eralarea
of the amount of the current density Letting the high of the cylinder approaching zero we get
(Hl‘Hz)XﬁzK T, L .
- the normal component of B is continuous across the boundary ﬁB s =-B,, I 5, +B,, .[ a5, =0
top area bottom area
(B,-8,)-n=0 or By =By,
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Field of a dipole

The potential of a charge distribution
k = (47s0) ™"

Boundary conditions

From Ampere's law we get (left for an exercise)

page 25 of 36
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The potential in Ais then given by

UA:kJ’@

2 , 2
R= [r2 +r? 72rr’cos¢9r/2 :1[14{'—2— o cosﬂ]]
r r r

= 1{1+LCDSH+O(%H
r r r

k ok oL
UA:?IpdV +r7jr c0s0 pdV +0[F)
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Or, generally with  r'cosd =f ' and with dipole moment defined as p :I?'p dav’
Koo i BD

Up,==|fFpdV'=k—-

A rz,‘. P 2

e.g. for a dipole in the origin, oriented in z-direction, we have a potential of

u =k 2=

peoso | pz
r (xz+22f/z

so that the components of the elecric field are given by
3k psind cosd

_ 0U _ 3kpxz
x= P

STV S
‘o ( +ZZ)5/2 (x2+22)3/2

P 3c0s?0 -1,
- 3

r
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Force and torque on adipole

The torque of an electric dipole in an electric field is given by
T=pxE
The force on an electric dipole in an inhomogeneous field is given by

F=(p-v)E

The far-fields of electric and magnetic dipoles are identical.

page 29 of 36
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Lorentz force an a moving charge

The relation between fields, electric charges and currents in the general case (time-
dependent case) is described by the general expression for the Lorentz force

F=q(E+VxB)

There it appears the electric field E, as well as the magnetic flux B.

page 30 of 36
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Conservation of charge
We design by j the current density of the moving charge distribution
j=pv

For reasons of conservation of charge and from the Gauss law applied on a
infinitesimal volume it follows the continuity equation

ai’erivi:O
ot
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Since charges can be neither created nor annihilated, the continuity equation for
charge density p and current density j holds: divi- _op

For a stationary current density j the magnetic field obeys Ampeére's law: curl B = s, j
Looking at time-dependent charge densities and fields p(X,l) with dp/ot =0
e.g. a condensator decharging via a resistor, the continuity equation tells us that
divj#0
From Ampeére's law, however, it always is true that
div j Ry (curl 8)=0
Ho
Ampére's law thus is not true for the case of a time-varying charge density.

In the general case of time-varying charge densites we write

curl B= 1 J+(?)
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We recall the differential formulation of Faraday's induction law
curl €= -1 %8
c ot

This is a local relation between the electric and the magnetic field if free-space
charges are not concerned.

For symmetry reasons between E and cB, we use a kind of induction phenomenon

10E

arcB=1%E o curl B=5—
cat c® ot

We write
: - 1al
curl B=ppj +5—
Hol Za
Which is another Maxwell Equation.

Taking the divergence on both sides leads to

. 5\ N, 10 . =
dIV(CUrlB):dlv(yoj)i»cfz;dlvE
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And, because divcurl=0,
ey 10 = ap
= uodiv(j)==—divE = gy —
Hodiv(i)= = "%
or
Lo dp
div| —=0
i)+

which again is the continuity equation.

The term 1 E
c? ot
Is called displacement current and is needed for the continuity equation to be
fulfilled.
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The Maxwell equations

From the gauss law, the absence of magnetic monopoles, Faraday's law of indu-
ction and Ampere's law follows by taking into account the continuity equation the
Maxwell-equations (in its differential form)

divE = p/eg curl E =—dB/dt
divB=0 curl B = ug(j + 2o dE/dt)

Maxwell introduced the displacement current (dielektric displacement), to obtain
consistency.

From the Maxwell-equations (ME) it follows the existence of electromagnetic waves
as well as the special theory of relativity (STR).
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Recommended reading:

E.M. Purcell Electricity and Magnetism: Berkeley Physics Course, Vol. 2
J.D. Jackson Classical Electrodynamics 2nd. Ed.
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